2,711 research outputs found

    Power System Stability With a High Penetration of Inverter-Based Resources

    Get PDF
    Inverter-based resources (IBRs) possess dynamics that are significantly different from those of synchronous-generator-based sources and as IBR penetrations grow the dynamics of power systems are changing. This article discusses the characteristics of the new dynamics and examines how they can be accommodated into the long-standing categorizations of power system stability in terms of angle, frequency, and voltage stability. It is argued that inverters are causing the frequency range over which angle, frequency, and voltage dynamics act to extend such that the previously partitioned categories are now coupled and further coupled to new electromagnetic modes. While grid-forming (GFM) inverters share many characteristics with generators, grid-following (GFL) inverters are different. This is explored in terms of similarities and differences in synchronization, inertia, and voltage control. The concept of duality is used to unify the synchronization principles of GFM and GFL inverters and, thus, established the generalized angle dynamics. This enables the analytical study of GFM-GFL interaction, which is particularly important to guide the placement of GFM apparatuses and is even more important if GFM inverters are allowed to fall back to the GFL mode during faults to avoid oversizing to support short-term overload. Both GFL and GFM inverters contribute to voltage strength but with marked differences, which implies new features of voltage stability. Several directions for further research are identified, including: 1) extensions of nonlinear stability analysis to accommodate new inverter behaviors with cross-coupled time frames; 2) establishment of spatial–temporal indices of system strength and stability margin to guide the provision of new stability services; and 3) data-driven approaches to combat increased system complexity and confidentiality of inverter models

    Impedance-based Root-cause Analysis:Comparative Study of Impedance Models and Calculation of Eigenvalue Sensitivity

    Get PDF

    Impedance-based Root-cause Analysis: Comparative Study of Impedance Models and Calculation of Eigenvalue Sensitivity

    Get PDF
    Impedance models of power systems are useful when state-space models of apparatus such as inverter-based resources (IBRs) have not been made available and instead only black-box impedance models are available. For tracing the root causes of poor damping and tuning modes of the system, the sensitivity of the modes to components and parameters are needed. The so-called critical admittance-eigenvalue sensitivity based on nodal admittance model has provided a partial solution but omits meaningful directional information. The alternative whole-system impedance model yields participation factors of shunt-connected apparatus with directional information that allows separate tuning for damping and frequency, yet do not cover series-connected components. This paper formalises the relationships between the two forms of impedance models and between the two forms of root-cause analysis. The calculation of system eigenvalue sensitivity in impedance models is further developed, which fills the gaps of previous research and establishes a complete theory of impedance-based root-cause analysis. The theoretical relationships and the tuning of parameters have been illustrated with a three-node passive network, a modified IEEE 14-bus network and a modified NETS-NYPS 68-bus network, showing that tools can be developed for tuning of IBR-rich power systems where only black-box impedance models are available

    Multiple-Time-Scales Hierarchical Frequency Stability Control Strategy of Medium-Voltage Isolated Microgrid

    Get PDF

    Design of Strongly Modulating Pulses to Implement Precise Effective Hamiltonians for Quantum Information Processing

    Get PDF
    We describe a method for improving coherent control through the use of detailed knowledge of the system's Hamiltonian. Precise unitary transformations were obtained by strongly modulating the system's dynamics to average out unwanted evolution. With the aid of numerical search methods, pulsed irradiation schemes are obtained that perform accurate, arbitrary, selective gates on multi-qubit systems. Compared to low power selective pulses, which cannot average out all unwanted evolution, these pulses are substantially shorter in time, thereby reducing the effects of relaxation. Liquid-state NMR techniques on homonuclear spin systems are used to demonstrate the accuracy of these gates both in simulation and experiment. Simulations of the coherent evolution of a 3-qubit system show that the control sequences faithfully implement the unitary operations, typically yielding gate fidelities on the order of 0.999 and, for some sequences, up to 0.9997. The experimentally determined density matrices resulting from the application of different control sequences on a 3-spin system have overlaps of up to 0.99 with the expected states, confirming the quality of the experimental implementation.Comment: RevTeX3, 11 pages including 2 tables and 5 figures; Journal of Chemical Physics, in pres

    A new method for imaging nuclear threats using cosmic ray muons

    Full text link
    Muon tomography is a technique that uses cosmic ray muons to generate three dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study above the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Here we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry
    • …
    corecore